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SUMMARY

We show that under some mild regularity conditions, a well-known sufficient

condition of Nelson and Cai (1992) turns out to be also a necessary condition for a

GARCH(p, q) model to have non-negative conditional variances, with probability

one. For the case of p ≥ 3, we, furthermore, derive readily verifiable sufficient

(necessary) conditions for the non-negativity of the conditional variance process

of a GARCH(p, q) model. The new inequality constraints are illustrated with an

analysis of a daily USD/HKD exchange rate dataset.
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1 Introduction

Over the past two decades, there are many econometric models developed in

the literature for modeling the volatility of asset returns. A popular model for

modeling volatility is the Generalized Auto-Regressive Conditional Heteroscedas-

tic (GARCH) model (Engle, 1982 and Bollerslev, 1986). For volatility modeling,

the conditional variance process of the model must be non-negative almost surely.

Hence, an important problem concerns the identification of necessary and suffi-

cient conditions for a GARCH model to have non-negative conditional variances

almost surely. For the ARCH model, the problem is trivial, see, e.g. Nelson and

Cao (1992). The problem for the GARCH model is, on the other hand, more dif-

ficult. Nelson and Cao (1992) derived some necessary and sufficient conditions for

the nonnegativity of GARCH(p, q) models with p ≤ 2 and a sufficient condition

for p > 2. In this article, we are interested in deriving necessary and sufficient

conditions for the nonnegativity of GARCH(p, q) models for p > 2.

Under a mild regularity condition (Assumption (A1) below), the GARCH

model can be re-written as an ARCH(∞) form, i.e. its conditional variance process

admits a moving-average representation in terms of the convolution of the GARCH

kernel and the squared error process. Hence, the conditional variance process of a

GARCH model is always non-negative if the GARCH kernel is non-negative. Tsai

and Chan (2005) studied the problem of characterizing the non-negativity of the

kernel of a causal ARMA model by exploiting the idea that the non-negativity of

the kernel is equivalent to the absolutely monotonicity of its generating function.

Because of the ARCH(∞) representation of a GARCH model is similar to the

moving-average representation of an ARMA model, many of the results of Tsai

and Chan (2005) can be adapted here for the GARCH models.

The rest of the paper is organized as follows. In Section 2, we review the

GARCH model and introduce some notations. The main results are stated in

Section 3, and a numerical example is given in Section 4. We briefly conclude in
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Section 5.

2 A Brief Review of GARCH Models

The GARCH(p, q) model is defined as

εt = σtzt, (1)

σ2
t = ω + β(L)σ2

t + α(L)ε2t , (2)

where {zt} is a sequence of iid random variables with zero mean and unit variance,

L is the lag (or backshift) operator (i.e. L(Xt) ≡ Xt−1), α(L) = α1L + α2L
2 +

· · ·αqL
q, and β(L) = β1L+β2L

2 + · · ·+βpL
p. Thus, by definition, the {εt} process

is serially uncorrelated with zero mean, but σ2
t , the conditional variance of εt given

εt−1, εt−2, εt−3..., is changing over time. Under the assumption that

(A1) all the roots of 1 − β(z) = 0 lie outside the unit circle,

equation (2) can be rewritten as an ARCH(∞) form:

σ2
t = {1 − β(1)}−1ω + {1 − β(L)}−1α(L)ε2t

= ω∗ +
∞∑

k=1

ψkε
2
t−k (3)

= ω∗ + Ψ(L)ε2t , (4)

where

Ψ(z) =
∞∑

k=0

ψkz
k =

α(z)

1 − β(z)
, (5)

with ψ0 = 0. We also assume that

(A2) the polynomials 1 − β(z) and α(z) have no common roots,

which is needed for model identifiability. For the GARCH(p, q) model in equa-

tion (2) to be well-defined and the conditional variance to be positive almost surely

for all t, all the coefficients in the ARCH (∞) representation in equation (3) must

be non-negative, i.e. ω∗ ≥ 0, and ψk ≥ 0, for k = 1, 2, .... In this paper, we are

interested in studying conditions under which {ψi}∞i=0 is non-negative. Finally, we

note that the GARCH model is often combined with other time series models such

as the ARIMA model to deal with the problem of conditional heteroscedascity, an

example of which is given in the numerical illustration.
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3 Main Results

To be a valid conditional variance, σ2
t must be non-negative with probability one. It

is clear from (3) that, if ω∗ ≥ 0 and ψk ≥ 0 for all positive integer k, then σ2
t ≥ 0.

Nelson and Cao (1992) derived some necessary and sufficient conditions for the

nonnegativity of GARCH(p, q) models with p ≤ 2 and a sufficient condition for

p > 2. In practice, given a particular set of GARCH parameters, checking the non-

negativity of {ψk}∞k=0 may be a numerically infeasible task. Nelson and Cao (1992)

showed that, for p > 2 and under some mild conditions, the non-negativity of

{ψk}u∗
k=0 for some tractable integer u∗ is sufficient for the non-negativity of {ψk}∞k=0.

In Theorem 1, we showed that, under the same mild conditions, the preceding

condition of Nelson and Cao (1992) is not only a sufficient condition but it is also

a necessary condition.

Let λj , 1 ≤ j ≤ p, be the roots of 1 − β(z) = 0. With no loss of generality, we

can and shall henceforth assume the following convention that

|λ1| ≤ |λ2| ≤ · · · ≤ |λp|. (6)

Let i =
√
−1 and λ̄ denote the complex conjugate of λ, B(z) = 1− β(z), and B(1)

be the first derivative of B. We then have the following result.

THEOREM 1 Consider a GARCH(p, q) model where p ≥ 2. Let (A1) and (A2)

be satisfied. Then the following holds:

(a) ω∗ ≥ 0 if and only if ω ≥ 0;

(b) Assuming the roots of 1 − β(z) = 0 are distinct, and |λ1| < |λ2|, then Condi-

tions (7) - (9) are necessary and sufficient for ψk ≥ 0 for all positive integer

k:

λ1 is real, and λ1 > 1, (7)

α(λ1) > 0, (8)

ψk ≥ 0, for k = 1, ..., k∗, (9)

where k∗ is the smallest integer greater than or equal to {log r1 − log((p −
1)r∗)}/(log |λ1| − log |λ2|),

rj = − α(λj)

B(1)(λj)
, 1 ≤ j ≤ p, and r∗ = max

2≤j≤p
|rj|.
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The case p = 1 is trivial. See Theorem 1 of Nelson and Cao (1992). For p = 2,

the k∗ defined in Theorem 1 can be shown to be q + 1, cf. Theorem 2 of Nelson

and Cao (1992). If the k∗ defined in Theorem 1 is a negative number, then it can

be seen from the proof that ψk ≥ 0 for all positive k.

Requiring that ψk ≥ 0 for all positive integer k imposes an infinite number

of inequality constraints on {αj}q
j=1 and {βj}p

j=1. For practical purposes (e.g. in

estimation) it is necessary to reduce this to a finite number of inequalities. In

Theorem 1 (b), we derive a set of verifiable necessary and sufficient conditions for

the non-negativity of {ψj}∞j=1 in terms of a finite number of inequalities under the

weak condition that the characteristic equation 1−β(z) = 0 has distinct roots and

the root of the smallest magnitude is unique. Indeed, the sufficiency part in part

(b) has earlier been obtained by Nelson and Cao (1992), while the necessity of the

conditions is a new result.

Tsai & Chan (2005) characterized the non-negativity of the kernel {ψk} for any

ARMA(p, q) model in terms of the absoulte monotonicity of its generating function.

They made use of this characterization to show that a necessary condition for the

kernel {ψk} of a stationary ARMA(p, q) model to be non-negative is that λ1 is

real, and λ1 > 1. Furthermore, for ARMA models of lower orders, they derived

some readily verifiable necessary and sufficient conditions for the kernel {ψk} to

be non-negative.

We shall characterize the non-negativity of {ψi}∞i=0 for any GARCH(p, q) model

in terms of its generating function. For this purpose, we first recall the definition of

the generating function (See Chapter XI of Feller, 1968). Let {pi}∞i=0 be a sequence

of real numbers. If

u(x) = p0 + p1x+ p2x
2 + · · ·

converges in some interval −x0 < x < x0, where x0 > 0, then u(x) is called

the generating function of the sequence {pj}. For the {ψj} defined by (3), its

generating function is given by equation (5). The significance of the generating

function of {ψi}∞i=0 lies in the well-known result that the non-negativity of {ψi}∞i=0

is equivalent to the absolutely monotonicity of its generating function (Feller, 1971,

Theorem 2 of Chapter VII.2).
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Now, we recall the definition of absolutely monotonicity; see Chapter VII of

Feller (1971) and Chapter IV of Widder (1946) for further discussion. A continuous

function f(x) is absolutely monotone in the interval a < x < b if it has non-negative

derivatives of all orders there:

f (n)(x) ≥ 0, a < x < b, n = 0, 1, 2, ....

Tsai and Chan (2005) exploited some properties of absolutely monotone functions

to derive some necessary and sufficient conditions for an ARMA model to be non-

negative. Now we state the non-negativity of {ψk} in terms of the absolutely

monotonicity of its generating function in the following theorem.

THEOREM 2 Let (A1) and (A2) be satisfied. Then the following holds:

(a) ψk ≥ 0 for all positive integer k if and only if Ψ(z) = {1 − β(z)}−1α(z), 0 ≤
z < 1, is absolutely monotone;

(b) if α1 > 0 and

Ψ1(z) = {1 − β(z)}−1



1 +

1

α1

q−1∑

j=1

αj+1z
j





is absolutely monotone, then ψk ≥ 0 for all positive integer k.

Note that Ψ1(z) in (b) is the generating function of the kernel of an ARMA(p, q−
1) model. In particular, if q = 1, Ψ1(z) = {1− β(z)}−1. Theorem 2 (b) provides a

link with some recent results of Tsai and Chan (2005) about the non-negativity of

ARMA models with that of GARCH models as stated in the following Theorem.

THEOREM 3 Let (A1) and (A2) be satisfied. Then the following holds.

(a) For a GARCH(p, 1) model, if λj is real and λj > 1, for j = 1, ..., p, and

α1 ≥ 0, then ψk ≥ 0 for all positive integer k.

(b) For a GARCH(p, 1) model, if ψk ≥ 0 for all positive integer k, then α1 ≥ 0,
∑p

j=1 λ
−1
j ≥ 0, λ1 is real, and λ1 > 1.

(c) For a GARCH(3, 1) model, ψk ≥ 0 for all positive integer k if and only if

α1 ≥ 0 and either of the following cases hold.
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Case 1. all the λj ’s are real numbers, λ1 > 1, and λ−1
1 + λ−1

2 + λ−1
3 ≥ 0.

Case 2. λ1 > 1, and λ2 = λ̄3 = |λ2|eiθ = a + bi, where a and b are real

numbers, b > 0, and 0 < θ < π:

Case 2.1. θ = 2π/r for some integer r ≥ 3, and 1 < λ1 ≤ |λ2|.

Case 2.2. θ /∈ {2π/r| r = 3, 4, ...}, and |λ2|/λ1 ≥ x0 > 1, where x0 is

the largest real root of fn,θ(x) = 0, and

fn,θ(x) = xn+2 − x
sin((n+ 2)θ)

sin θ
+

sin((n+ 1)θ)

sin θ
, (10)

where n is the smallest positive integer such that sin((n + 1)θ) < 0

and sin((n+ 2)θ) > 0.

(d) For a GARCH(3, 1) model, if λ2 = λ̄3 = |λ2|eiθ = a + bi, where a and b are

real numbers, b > 0, and a ≥ λ1 > 1, then ψk ≥ 0 for all positive integer k.

(e) For a GARCH(4, 1) model, if λj ’s are real, for 1 ≤ j ≤ 4, then a necessary

and sufficent condtion for {ψi}∞i=0 to be non-negative is that α1 ≥ 0, λ−1
1 +

λ−1
2 + λ−1

3 + λ−1
4 ≥ 0, and λ1 > 1.

Remark 1: Note that x0 is the only real root of equation (10) that is ≥ 1. See

Tsai and Chan (2005).

Remark 2: Theorem 3 and the fact that the product of two absolutely mono-

tone functions is again absolutely monotone (Theorem 2a of Widder, 1946, p.

145) can be used to construct simple sufficient conditions for GARCH(p, q) models

from known results of GARCH(p, 1) model. For example, if the ARCH coeffi-

cients (α’s) of a GARCH(p, q) model are all non-negative, the model has non-

negative conditional variances if the non-negativity property holds for the as-

sociated GARCH(p, 1) models with a non-negative α1 coefficient. As another

example, consider a GARCH(4, 1) model for which α1 ≥ 0 and the roots of

1 − β(z) = 0 satisfy condition (6); moreover, λ1 and λ4 are real numbers, λ4 > 1,

λ2 = λ̄3 = |λ2|eiθ = a + bi, where a and b are real numbers, and a ≥ λ1 > 1.

Then by Theorem 3 (a), (b), and (d), {ψi}∞i=0 is non-negative for this partic-

ular GARCH(4, 1) model. These results complement the following well-known

necessary and sufficient condition for the non-negativity of GARCH(2, q) models
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obtained by Nelson and Cao (1992), which is repeated here for convenience of

reference.

THEOREM 4 (Nelson-Cao) Let (A1) and (A2) be satisfied. Then for a GARCH(2, q)

model, ψk ≥ 0 for all positive integer k if and only if the following conditions hold:

λ1 is real, and λ1 > 1, (11)

α(λ1) > 0, (12)

and

ψk ≥ 0, for k = 0, 1, ..., q. (13)

4 An Empirical Example

As an illustration, we consider the daily USD/HKD (US dollar to Hong Kong dol-

lar) exchange rate from January 1, 2005 to March 7, 2006, altogether 431 daily

data; The data are available at http://www.oanda.com/convert/fxhistory.

FXHistory is a user-friendly front-end for accessing the largest foreign exchange

database on the Internet. These data are non-stationary, so we analyze the first

difference of the logarithmically transformed daily exchange rates; see Fig. 1. Af-

ter first differencing, the data appear to be stationary although it is clearly het-

eroscedastic with volaility clustering. An AR(1)-GARCH(3,1) model was fitted to

the data, with an additive outlier on July 22, 2005, the date when China revalued

the yuan by 2.1 percent and adopted a floating-rate system for the yuan. The

intercept term in the conditional mean function was found to be not significantly

different from zero, and hence it is omitted from the model; thus the returns have

zero mean unconditionally. The fitted model has an AIC=-2070.9, being smallest

among various competing (weakly) stationary models, see Table 1. Interestingly,

for lower GARCH orders (p ≤ 2), the fitted models are non-stationary but the

fitted models are largely stationary when the GARCH order is higher than 2. As

the data appear to be stationary, we choose the AR(1)-GARCH(3,1) model as the

final model.

The models were fitted by Proc Autoreg of SAS. We used the default option of

imposing the Nelson-Cao inequality constraints for the GARCH variance process to
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be non-negative. However, the inequality constraints so imposed are only necessary

and sufficient for the non-negativity of the conditional variances of a GARCH(p, q)

model for p ≤ 2. For higher-order GARCH models, Proc Autoreg imposes the con-

straints that (1) ψk ≥ 0, 1 ≤ k ≤ max(q−1, p)+1 and (2) the non-negativity of the

in-sample conditional variances, see SAS 9.1.3 Help and Documentation manual.

Hence, higher-order GARCH models estimated by Proc Autoreg with the Nelson-

Cao option need not have non-negative conditional variances with probability one.

For the Hong Kong exchange rate data, the fitted model from Proc Autoreg is

listed in Table 2, with the estimated conditional variances shown in Fig 2. Note

that the GARCH2 (β2) coefficient estimate is negative.

Since both the intercept and the ARCH coefficient are positive, we can apply

Theorem 3(c) to check whether or not the conditional variance process defined by

the fitted model is always non-negative. The characteristic equation 1 − β(z) = 0

admits three roots equal to 1.153728, and −0.483294±1.221474i, so λ1 = 1.153728

and |λ2|/λ1 = 1.138579. Based on numerical computations, n in Equation (10)

turns out to be 2 and Equation (10) has one real root equal to 1.1385751 which

is strictly less than 1.138579 = |λ2|/λ1. Hence, we can conclude that the fitted

model always results in non-negative conditional variances.

5 Conclusion

The preceding example illustrates the potential usefulness of the newly derived

inequality constraints for verifying the nonnegativity of the conditional variance

process of a higher order GARCH model. We have obtained in Theorem 1 a finite

set of necessary and sufficient conditions for the nonnegativity of the conditional

variance process of a GARCH model under the mild regularity conditions that

|λ1| < |λ2|. This regulairty condition fails for a seasonal GARCH model, i.e.

β(z) is a polynomial in Bs for some positive integer s. Further research extending

Theorems 1 and 3 for the seasonal case constitutes an interesting research problem.
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APPENDIX

Proof of Theorem 1.

We first prove part (a). By Equation (3), ω∗ = {1 − β(1)}−1ω. Furthermore,

Condition (A1) on the root of 1 − β(1) implies 1 − β(1) > 0. Thus, ω∗ ≥ 0 if and

only if ω ≥ 0. This proves part (a).

For part (b), the necessity of (9) is obvious. The necessity of (7) and (8) can

be proved as follows. By Equations (4.8) and (4.9) of Feller (1968, p. 276 and p.

277), we have, for n ≥ max{p, q}+ 1,

ψn =
p∑

i=1

ri

λn+1
i

(14)

∼ r1
λn+1

1

, (15)

where “∼” means that the ratio of the two sides tends to 1, as n→ ∞. Thus, λ1

must be real and > 1. Moreover, r1 = −α(α1)/B
(1)(λ1) must be ≥ 0. Note also

that

−B(1)(λ1) =
1

λ1

p∏

j=2

(
1 − λ1

λj

)
,

and by (6), −B(1)(λ1) > 0. Hence, α(λ1) ≥ 0. But α(λ1) 6= 0 by assumption

(A2). This proves the necessity of α(λ1) > 0. The proof of (b) for the sufficiency

of Conditions (7) - (9) was given in Nelson and Cao (1992).

Proof of Theorem 2.

Part (a) follows from Feller (1971, Theorem 2 of Chapter VII.2).

Part (b) follows from the equality

Ψ(z) = α1zΨ1(z).

and the fact that the product of two absolutely monotone functions is still abso-

lutely monotone (Theorem 2a of Chapter IV, Widder, 1946).

Proof of Theorem 3.

Parts (a)-(e) are conditions on GARCH(p, q) models with q = 1, which can be

proved as follows. For q = 1, α(z) = α1z, and by equation (4.8) of Feller (1968, p.

276), we have, for n = 1, 2, 3, ...,

ψn =
p∑

i=1

−α(λi)

B(1)(λi)λ
n+1
i

= α1

p∑

i=1

−1

B(1)(λi)λn
i

= α1ψ
∗
n−1,
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where {ψ∗
n}∞j=0 is the kernel of the AR(p) model:

Xt = B−1(L)at =
∞∑

k=0

ψ∗
kL

kat,

and {at} is a sequence of iid random variables. Some necessary and/or sufficient

conditions for the non-negativity of the AR(p) models are given by Theorem 2.1

of Tsai and Chan (2005). The proofs of parts (a)-(e) now follow from Theorem

2.1 (b), (d), (g), and (h) of Tsai and Chan (2005). This complets the proof of

Theorem 3.
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AR order GARCH order (p) ARCH order (q) AIC Stationarity

0 3 1 -1915.3 non-stationary

1 1 1 -2054.3 non-stationary

1 1 2 -2072.5 non-stationary

1 1 3 -2051.0 non-stationary

1 2 1 -2062.2 non-stationary

1 2 2 -2070.5 non-stationary

1 2 3 -2059.2 non-stationary

1 3 1 -2070.9 stationary

1 3 2 -2064.8 stationary

1 3 3 -2062.8 stationary

1 4 1 -2061.7 non-stationary

1 4 2 -2054.8 stationary

1 4 3 -2062.4 stationary

2 3 1 -2066.6 stationary

Table 1: AIC of various models fitted to the daily returns of USD/HKD exchange

rate.
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coefficients estimate std. err. t-ratio p-value

AR1 0.1635 0.005892 -21.29 0.0022

ARCH0 (ω) 2.374×10−5 6.93×10−6 3.42 0.0006

ARCH1 (α1) 0.2521 0.0277 9.09 < .0001

GARCH1 (β1) 0.3066 0.0637 4.81 < .0001

GARCH2 (β2) -0.09400 0.0391 -2.41 0.0161

GARCH3 (β3) 0.5023 0.0305 16.5 < 0.0001

outlier -0.1255 0.00589 -21.29 < 0.0001

Table 2: Fitted AR(1)-ARCH(3,1) model for the daily returns of USD/HKD ex-

change rate. The model has an additive outlier on July 22, 2005.
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Figure 1: Daily returns of USD/HKD exchange rate from January 1, 2005 to

March, 7, 2006.
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Figure 2: Estimated conditional variances of the daily returns of USD/HKD ex-

change rate data from the fitted AR(1)-GARCH(3,1) model.


